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We introduce a theory to describe disorder-induced scattering in photonic crystal waveguides, specifically
addressing the influence of local field effects and scattering within high-index-contrast perturbations. Local
field effects are shown to increase the predicted disorder-induced scattering loss and result in significant
resonance shifts of the propagating waveguide mode. Performing an incoherent averaging calculation, we
demonstrate that two types of frequency shifts can be expected, a mean frequency shift and a rms frequency
shift both acting in concert to blueshift and broaden the nominal band structure. The disorder-induced broad-
ening is found to increase as the propagation frequency approaches the slow-light regime (mode edge) due to
restructuring of the electric-field distribution. These findings shed new light on why it has hitherto been
impossible to observe the very slow-light regime for photonic-crystal waveguides and suggest that the nominal

slow-light mode edge may not even exist.
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I. INTRODUCTION

Photonic crystal (PC) structures comprised of high-index-
contrast cavities and waveguides offer a rich degree of con-
trol over light-matter interactions, leading to trapped' and
slow-light modes? buried within a forbidden photonic band
gap. In the more practical, planar PC semiconductor systems,
waveguide modes can be completely bound below the light
line. However, manufacturing imperfections result in fabri-
cation disorder that breaks the translational invariance of a
nominally perfect lattice and causes external scattering of the
bound modes. From a theoretical perspective, the role and
impact of fabrication disorder on slow-light slab waveguides
is becoming better understood:*~> minute sidewall imperfec-
tions act to perturb the propagating mode causing the light to
out scatter through radiation modes or backscatter and mul-
tiple scatter within the waveguide.®® Scattering losses be-
come particularly pronounced in the slow-light regime as the
local density of states of the mode into which light can scat-
ter increases.

Although many experiments have confirmed this slow-
light loss behavior,”"!' an open question that still remains is
what is the effect of disorder on the photonic band structure?
The answer to this question involves a complex interplay
between local-field corrections and enforcing boundary con-
ditions between parallel and perpendicular field components.
Experimental evidence for a dramatic reduction in transmis-
sion near the mode edge is observed to take place much
sooner than that predicted for the scaling of scattering loss.
This suggests that some unknown effect is either shifting the
mode edge or broadening the band structure. Here we ad-
dress this question directly and show that surprisingly large
changes in the band structure occur which have not been
anticipated before. Our findings introduce a fresh under-
standing of the role of disorder-induced scattering and apply
to a wide range of high-index-contrast structures including
coupled resonator optical waveguides (CROWs).

The usual theoretical approaches to modeling disorder-
induced scattering employ standard perturbation theory
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where the modal electric field is used with the dielectric in-
dex change to model polarization scatterers, through P
=AecE, with E the unperturbed field and Ae is the dielectric
contrast change resulting from a spatial perturbation (e.g., air
to silicon gives Ae =~ 12).!? For high-index-contrast perturba-
tions, as shown by Johnson et al.,'? this polarization scatterer
is problematic for several reasons: (i) the parallel compo-
nents of the electric field and the perpendicular components
of the displacement field must be continuous across the sur-
face and (ii) the index change results in local-field correc-
tions. Andreani and Gerace'* attempted to estimate the mag-
nitude of this error in their theory by comparing with a
simple numerical-supercell calculation of perfect hole shapes
with different radii and they concluded that the effects of
local fields was not important. Wang et al.'> employed the
well-known slowly varying surface approximation,'® valid
only for smooth bumps, and demonstrated the impact on in-
creasing the scattering losses. For PC cavity systems, Ra-
munno and Hughes'® showed that a quickly varying surface
perturbation can cause mean resonance shifts of a strongly
confined cavity mode.'® The rms ensemble-average shifts
were computed for intrinsically lossy CROW structures,'”!3
but local fields were not considered and only band-edge
broadening was predicted.

With regards to PC waveguides, to the authors’ knowl-
edge, there have been no calculations nor any awareness of
disorder-induced resonance shifts. Neither has anyone com-
puted disorder-induced losses in the presence of realistic rap-
idly varying surface perturbation by properly addressing the
two problematic criteria above. In this work, we overcome
these limitations, and introduce a straightforward optical-
scattering theory that allows one to compute scattering losses
and resonance shifts within an ensemble-averaging proce-
dure while accounting for local field effects. The ensemble-
average statistical calculation applies to measurements of an
ensemble of nominally identical structures and (or) it applies
to the statistics of one waveguide which contains many
nominally identical unit cells. This is a reasonable first model
to report since typical PC waveguides of only 1 mm length
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contain already many thousands of unit cells; our methodol-
ogy can also help guide future coherent-scattering theories,
where such effects were neglected.” Using representative cal-
culations, we subsequently demonstrate that significant and
unusual disorder-induced changes in the band structure can
occur, as well as modifications (increases) to the predicted
scattering losses.

II. THEORY AND CALCULATIONS

The total electric field, in the presence of disorder can be
calculated from

E(r;w):E,-(r;w)+f dr'G(r,r'";o) - P(r';w),

all space
(1)

where P(r’; w) is the polarizationlike density due to the dis-
order in the system, E;(r;w) is the electric field in the ideal

(no disorder) system,'? and G(r,r';w) is the photon Green’s
function. The Green’s function is simply a dipole solution to
the Maxwell wave equation and it contains information
about how light scatters as well as the local-photon density
of states. For convenience, we partition the Green’s function
into contributions from the bound waveguide mode, radia-
tion modes above the light line, and other modes as
G(r,r’;w):GB(r,r’;w)+GR(r,r’;w)+éo(r,r’;w). The
bound mode Green’s function is given analytically from
properties of the bound mode’!°

— aw . ’
Gg(r,r';mw) = i—2 [ex(r) ® ez(r’)e’k("‘x O(x-x")
v
g

+ei(r) @ e(r)e MO -],  (2)

where v, is the group velocity (assumed to be positive), e,(r)
is the Bloch mode electric field normalized by
Sunitcendre(r)|ey(r)>=1, ® is a tensor product, e_(r)
=e¢;(r), and O(x) is the Heaviside step function. For our
calculations below, we use a W1 PC waveguide formed from
a semiconductor membrane by omitting a row of holes in a
two-dimensional triangular array of holes. The lattice pitch is
a=480 nm, the hole radius r=95 nm, and the slab thickness
is h=160 nm. The dispersion of the ideal waveguide mode
is shown in Fig. 1(a). The electric-field Bloch mode distribu-
tion is shown on symmetry planes in the unit cell in Fig. 1(b)
for a wave vector near the mode edge.

The disorder fluctuations of interest must closely corre-
spond to real images of fabricated PC waveguides® and thus
we consider disorder in PC slab structures that is dominated
by perturbations of the perimeter of the holes, an example of
which is shown in Fig. 1(c); this is also consistent with pre-
vious models used to successfully fit experiments.®® We take
the radial perturbation Ar to be a Gaussian random variable
with a mean of zero and a standard deviation of o. Two
radial perturbations are correlated by (Ar(¢;)Ar( ¢]'))

=g%e”"1#79]llp5, , where the subscript indexes the holes, ¢,
is the angular position of the point measured about the center
of the hole, r is the hole radius, and lp is the correlation
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FIG. 1. (Color online) (a) Nominal dispersion of PC waveguide
mode (blue/lowest solid) and the broadened disorder-induced band
structure that we will introduce later (gray shading). (b) Electric-
field Bloch mode near the band edge along symmetry planes in the
unit cell. (c) Example of a disordered hole profile that satisfies the
statistics used in the calculation (blue jagged). The ideal radius
(dashed black) and correlation length (short red arc) are shown for
reference, where R indicates the nominal radius of the unperturbed
hole and o is the rms fluctuation.

length measured around the circumference. The change in
dielectric _constant can be written as Ag(r)=(s,
—&)Ard(Nx>+y?=r)O(h/2-|z|), where x; and y; are the
components of r measured from the center of the hole, and
the Heaviside step function restricts the disorder to a slab of
thickness 4. In this analysis, below, we used representative
disorder parameters of 0=3 nm and /,=40 nm, which are
typical for fabricated samples.

The failure of the weak contrast model, namely, Pg;
=AecE, is most obvious by considering a small dielectric
sphere introduced in a homogeneous background with di-
electric constant &,. It is well known that the weak contrast
polarizability Ae must be replaced with the correct polariz-
ability 3Ae/(3e,+A¢g) [as can easily be proven from Eq. (1)
(Ref. 16)]. Due to local field effects, the macroscopic scat-
tering depends on the microscopic geometry of the scatter
and this is also true for disordered waveguides. This issue
has been partly investigated by Johnson et al.,'* who give the
corrected disorder polarization density due to a disorder ele-
ment at r’ as (w is implicit)

e +&
2

P(r)= aE (r) +e(r)y, D, (r) |[AVS(xr-1'),

A3)

where o and 7y, are polarizabilities for the disorder element,
(r) takes a different value depending on which side of the
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interface r’ is located, and AV is the volume of the disorder
element. Due to the &(r) factor, E*(r)-P(r) will have terms
proportional to |E,(r)|* and |D | (r)|?> and these fields are well
defined at a dielectric interface. This improved disorder
model hides a great deal of complexity in the polarizabilities
a and 7y, . The polarizabilities are different for a positive
bump (g, extending into &,, qy=q;) and a negative bump
(). Further, in general, the polarizabilities are asymmetric
so that & # —a;. Finally, the exact polarizabilities depend on
the precise geometry of the disorder element and must be
calculated numerically. It is thus no surprise that only a
single isolated bump was treated in Ref. 13.

One method to simplify the treatment of the polarizabil-
ities is to assume a structure for the disorder where the po-
larizability is known. In Ref. 15, a g;)olarization density of the
form P(r)=Ae(r)[E/(r)+&(r) D;IEZ)](S(I‘—I") was  used,
namely, the slowly-varying surface approximation. This
takes care of the issue of the E(r) being ill defined at the
interface but it has some subtle and questionable assump-
tions. Implicit in the derivation of this term is the assumption
that the disordered surface is smooth; effectively that the
hole radius changes but remains nearly circular. As a model
for the disorder in real fabricated samples, this is rather sus-
pect, and it is known that the interface fluctuations vary rap-
idly [cf. Fig. 1(c) and Ref. 20]. Our solution to this general
problem is to use a representative model for the polarizabil-
ity, namely, Eq. (3) with the numerically calculated polariz-
abilities for a cylindrical bump,'? in combination with our
numerically generated disordered profile.

It is easiest to compare these polarization-density models
above using our incoherent-scattering calculation where the
band-edge resonances are suppressed. The incoherent aver-
age power loss, which is dominated by backscatter loss for
slow-light PC waveguides, is>

2
<aback>=<%> Jfdrdr’<[E(r)'P(r)][E*(r’)-P*(r')]%
8
(4)

where the integration is performed over a single unit cell and
E(r)=e,(r)e**. The incoherent averaged backscatter loss is
plotted in Fig. 2 for the weak-contrast (blue—lower solid),
smooth-surface (green—middle solid), and cylindrical-bump
(red—upper solid) models. Although the exact loss predic-
tions differ, all the models predict similar loss trends and
their magnitudes are similar. For the roughness statistics
typical of PC waveguide systems, we find reasonable agree-
ment between the backscatter loss predictions of the three
models, though the smooth surface and weak contrast models
underestimate the scattering loss.

As discussed previously, one of the effects neglected

when one ignores the (_}O(r,r’ ; w) contribution of the Green
function is disorder-induced frequency shifts. This—
hitherto—theoretically unknown phenomenon for PC
waveguides is closely related to the selection of a suitable
polarization model, as the predicted frequency shift is sensi-
tive to this term. The first-order mean frequency shift due to
disorder is given as*!

PHYSICAL REVIEW B 81, 245321 (2010)

50
5
(@) 40
= g
D 30 =
5] o,
&
%’ 20 3
» i
f% 10
m

1075 1 1 1

192 194 196 198

Frequency [THz]

FIG. 2. (Color online) Incoherent averaged back scatter loss for
a single unit cell using the weak-contrast (blue—lower solid),
smooth-surface (green—middle solid), and cylindrical-bump (red—
upper solid) polarization-density models. For reference, the group
index (magenta, dot dash) is shown on the right scale.

(o)=-3 f dr(E"(r) - P(r)) (5)

with E(r) normalized as before. The frequency shift is usu-
ally taken to be zero for zero-mean surface perturbations but
as shown previously for a PC cavity,'® correctly treating lo-
cal field effects yield a nonzero first-order frequency shift.
Considering the above polarization densities both the weak
contrast and smooth surface models predict (Aw)=0 due to
the symmetry in the polarization for positive and negative
bumps. The cylindrical bump polarizability predicts a non-
zero (Aw) but the details differ from Ref. 16 (the simpler PC
cavity case) due to differing disorder models; moreover, for
the waveguide, we are also dealing with a continuous mode
rather than a discrete resonance. When using the polarization
density of Eq. (3), care must be taken when evaluating the
expectation value since the value of the polarizabilities de-
pends on the direction of the bump. In addition to the mean
frequency shift, which in general may or may not be zero,
the rms frequency shift (Aw),,=V(Aw?) is not. It is calcu-
lated in a similar way to the corrected backscatter loss, from

2
(Ao?)="" f f drdr’ (E*(r) - P(OJLE‘(r") - P(r'))).
(©)

We stress that neither of these two frequency shifts have
been predicted nor calculated for PC waveguides yet clearly
they are important for the analysis of optical scattering phe-
nomena in PC waveguides. Figure 3 plots the mean (dashed)
and rms (solid) frequency shifts for the weak-contrast (blue),
smooth-surface (green), and cylindrical-bump (red—upper
solid) polarization-density models. The weak-contrast and
smooth-surface models—incorrectly—predict zero-mean fre-
quency shifts and thus are not shown. The disorder-induced
frequency shifts are particularly important for understanding
experimental transmission spectra. Typically, very near the
band edge, there will be an abrupt drop in the transmission
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FIG. 3. (Color online) Mean frequency shift (dashed) and rms
frequency shift (solid) using the weak-contrast (blue—middle
solid), smooth-surface (green—lower solid), and cylindrical-bump
(red—upper solid) polarization-density models. Only the
cylindrical-bump model has a nonzero-mean frequency shift. For
reference, the group index (magenta, dot dash) is shown on the right
scale.

associated with a local frequency shift causing the band to be
shifted such that the injected frequency is below the new
band edge. As can be seen from the rms frequency shifts, this
will be an issue regardless of the polarization model but can
be exasperated by a nonzero-mean frequency shift. The inset
to Fig. 1(a) depicts the computed band structure with
disorder?? (gray shaded band), showing that getting too close
to the mode edge is actually impossible. Qualitatively, for
waveguide-mode frequencies within a few standard devia-
tions of the mode edge (slow-light regime), we expect that
somewhere along the waveguide, total reflection will inevi-
tably occur.

II1. DISCUSSION

The improved disorder models that we have introduced
are directly relevant to a wide range of enhanced light-matter
interaction physics that occurs in nanophotonic waveguides.
Apart from the consistent observation of a sudden, dramatic
reduction in transmission in PC waveguide near the mode
edge (underestimated by current theories), we cite two other
examples: (i) observation of the enhanced spontaneous emis-
sion with single-photon emitters (quantum dots) near the
mode edge indeed observe a broadened and substantially re-
duced density of states than is expected from the disorder-
free band structure?® and (ii) recent work by Morichetti et
al.** demonstrate that backscattering is also one of the most
severe limiting factors in state-of-the art silicon on insulator
nanowires, and our conclusions are directly applicable and
supportive of these measurements as well: broadening and
band-structure restructuring near the mode edge will, inevi-
tably, result in dramatic backscattering.

A few words about the general modeling approach is also
in order. As mentioned before, the losses and frequency
shifts that we calculate here are obtained by integrating over
the volume of a single unit cell. As such they are the expec-
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tation values when an infinite ideal waveguide is subject to
identical disorder in every unit cell (periodic disorder). This
approximate and simple model provides essential insight into
the problem at hand, namely, a disordered waveguide formed
by concatenating unit cells from different periodically disor-
dered waveguides. When most of the periodically disordered
waveguides are likely to be shifted so that the frequency of
interest lies in the stop band (i.e., the rms frequency shift is
on the order of the detuning from the nominal band edge),
the disordered waveguide is expected to not support propa-
gating modes. In addition since there are many different dis-
ordered unit cells in a given waveguide and the frequency
shifts that we have provided are averages, it is possible that
individual unit cells may be shifted into the stop band when,
on average, we expect transmission. The presence of such
isolated elements does not necessarily imply a complete
elimination of transmission. When light is incident on an
ideal waveguide in the stop band, the evanescent tail of the
mode will reach into the waveguide even though there is no
power propagation. If such a waveguide is very short, on the
order of the evanescent decay constant, it is possible for the
mode to tunnel through the barrier. We thus expect a similar
phenomena to occur in disordered waveguides and so it is
only when the majority of the unit cells are shifted into the
stop band that propagation will be totally suppressed. Finally,
although we have specialized this first theoretical study to
incoherent averages, our general results can also be used to
guide and improve current models that have been used to
describe disorder-induced coherent scattering, e.g., see Refs.
6 and 25, which is left to future work.

IV. CONCLUSIONS

In summary, we have described a theory of disorder-
induced scattering to include the influence of local field ef-
fects and high-index-contrast perturbations. Our calculations
are shown to increase the predicted waveguide losses and
result in significant and complex disorder-induced resonance
shifts. The band-structure broadening [shown in Fig. 1(a)]
offers important insights into the fabrication limits of slow-
light propagation in PC waveguides and should serve as a
further warning that propagation modes near the mode edge
will have an increasingly better chance of being completely
reflected. These predictions are interesting in their own right
and are important for the analysis and interpretation of re-
lated experiments.
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